Search results for "Nucleophilic substitution"

showing 10 items of 72 documents

2020

The course of organic chemical reactions is efficiently modelled through the concepts of “electrophiles” and “nucleophiles” (meaning electron-seeking and nucleus-seeking reactive species). On the one hand, an advanced approach of the correlation of the nucleophilicity parameters N and electrophilicity E has been delivered from the linear free energy relationship log k (20 °C) = s(N + E). On the other hand, the general influence of the solvent mixtures, which are very often employed in preparative synthetic chemistry, has been poorly explored theoretically and experimentally, to date. Herein, we combined experimental and theoretical studies of the solvent influence on pyrrolidine nucleophili…

010405 organic chemistryChemistryGeneral Chemical EngineeringSolvationGeneral ChemistryFree-energy relationship010402 general chemistry01 natural sciencesPyrrolidine0104 chemical sciencesSolventchemistry.chemical_compoundComputational chemistryNucleophilic substitutionDensity functional theorySolvent effectsAcetonitrileRSC Advances
researchProduct

Regio-, Diastereo-, and Enantioselective Organocatalytic Addition of 4-Substituted Pyrazolones to Isatin-Derived Nitroalkenes

2019

"This is the peer reviewed version of the following article: [FULL CITE], which has been published in final form at [Link to final article using the DOI]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."

010405 organic chemistryIsatinOrganic ChemistryEnantioselective synthesis010402 general chemistry01 natural sciences0104 chemical scienceschemistry.chemical_compoundchemistryOrganocatalysisNucleophilic substitutionOrganic chemistryPyrazolonesPhysical and Theoretical ChemistryEuropean Journal of Organic Chemistry
researchProduct

Total Synthesis of (-)-Oxycodone via Anodic Aryl-Aryl Coupling.

2019

A fully regio- and diastereoselective electrochemical 4a–2′-coupling of a 3′,4′,5′-trioxygenated laudanosine derivative enables the synthesis of the corresponding morphinandienone. This key intermediate is further transformed into (−)-oxycodone through conjugate nucleophilic substitution for E-ring closure and [4 + 2] cycloaddition with photogenerated singlet oxygen to accomplish diastereoselective hydroxylation at C-14. The anodic transformation provides high yields and can be performed under constant current conditions both in a simple undivided cell or in continuous flow.

010405 organic chemistrySinglet oxygenArylOrganic ChemistryTotal synthesis010402 general chemistryElectrochemistry01 natural sciencesBiochemistryCombinatorial chemistryCycloaddition0104 chemical sciencesHydroxylationchemistry.chemical_compoundchemistryNucleophilic substitutionPhysical and Theoretical ChemistryConjugateOrganic letters
researchProduct

Short X···N Halogen Bonds With Hexamethylenetetraamine as the Acceptor

2021

Hexamethylenetetramine (HMTA) and N-haloimides form two types of short (imide)X···N and X–X···N (X = Br, I) halogen bonds. Nucleophilic substitution or ligand-exchange reaction on the peripheral X of X–X···N with the chloride of N-chlorosuccinimide lead to Cl–X···N halogen-bonded complexes. The 1:1 complexation of HMTA and ICl manifests the shortest I···N halogen bond [2.272(5) Å] yet reported for an HMTA acceptor. Two halogen-bonded organic frameworks are prepared using 1:4 molar ratio of HMTA and N-bromosuccinimide, each with a distinct channel shape, one possessing oval and the other square grid. The variations in channel shapes are due to tridentate and tetradentate (imide)Br···N coordi…

116 Chemical scienceschemistry.chemical_elementHMTAN-haloimidechemistry.chemical_compoundkemialliset sidoksethalogen bond. hexamethylenetetraamine. N-haloimide.Nucleophilic substitutionsupramolekulaarinen kemiaQD1-999orgaaniset yhdisteetOriginal ResearchInterhalogenHalogen bondBrominehalogeenitChemistryhexamethylenetetraaminehalogen bond. hexamethylenetetraamine. N-haloimideGeneral ChemistryAcceptorChemistryCrystallographyCovalent bondinterhalogenHalogendihalogenhalogen bondHexamethylenetetramine
researchProduct

Endohedral Mixed Aggregates: Sodium Alkoxide Cages with Organic or Inorganic Central Anions and Variable Hull.

2021

Abstract Alkali metal alkoxides are widely used in chemistry due to their Brønsted basic and nucleophilic properties. Potassium alkoxides assist alkyllithium in the metalation of hydrocarbons in Lochmann‐Schlosser‐bases. Both compounds form mixed aggregates, which enhance the thermal stability, solubility, and the basic reactivity of these mixtures. A very unusual spherical mixed alkoxy aggregate was discovered by Grützmacher et al., where a central dihydrogen phosphide anion is surrounded by a highly dynamic shell of thirteen sodium atoms and a hull of twelve tert‐butoxide groups. This structural motif can be reproduced by a reaction of trimethylsilyl compounds of methane, halogens, or pse…

540 Chemistry and allied sciencesMetalationSodiumalkoxidechemistry.chemical_elementHot Paper010402 general chemistry01 natural sciencesCatalysischemistry.chemical_compoundPolymer chemistryNucleophilic substitutionReactivity (chemistry)isotopic labelingsodiumFull Paper010405 organic chemistryOrganic ChemistryaggregationGeneral ChemistryFull PapersAlkali metal0104 chemical scienceschemistry540 ChemieAlkoxideHalogenAlkoxy groupcage compoundsChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Recent advances in electrochemical meso- and β-functionalization of porphyrins and electrografting of diazonium porphyrins

2020

Abstract Recent studies on electrochemical meso- and β-functionalization of porphyrins and electrografting of diazonium porphyrin are presented. First, the electrochemical oxidative C–C coupling between porphyrins will be presented, followed by the intermolecular and intramolecular meso- and β-substitutions of porphyrins. Then, the latest results on diazonium porphyrin electrografting will be reviewed.

Anodic nucleophilic substitution02 engineering and technology010402 general chemistryPhotochemistryElectrochemistry01 natural sciencesDiazonium-porphyrin electrograftingAnalytical ChemistryPorphyrinchemistry.chemical_compoundOrganic electrosynthesis[CHIM.ANAL]Chemical Sciences/Analytical chemistryElectrochemistry[CHIM.COOR]Chemical Sciences/Coordination chemistry[CHIM.ORGA]Chemical Sciences/Organic chemistryIntermolecular forceElectropolymerization[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyPorphyrin0104 chemical sciencesCoupling (electronics)chemistryIntramolecular forceSurface modification0210 nano-technology
researchProduct

Aryl azides formation under mild conditions: a kinetic study in some ionic liquid solutions.

2009

The kinetics of nucleophilic aromatic substitution of three nitrothiophene derivatives in different [1-butyl-3-methylimidazolium][N(3)]/ionic liquid binary mixtures was studied spectrophotometrically at 298 K. Ionic liquids differing for cation structure (imidazolium or pyrrolidinium) and for size, shape, and coordination ability of the anion ([BF(4)(-)], [PF(6)(-)], [SbF(6)(-)], and [NTf(2)(-)]) were used. Furthermore, in order to have a comparison with conventional organic solvents, the target reaction was also carried out in DMF solution at increasing concentration of NaN(3) or [bmim][N(3)]. Data collected show that the reaction occurs faster in DMF than in ionic liquid solution. Further…

ArylOrganic ChemistryInorganic chemistryionic liquids aryl azides kinetic measurementsLeaving groupSolventchemistry.chemical_compoundchemistryNucleophileNucleophilic aromatic substitutionHexafluorophosphateIonic liquidNucleophilic substitutionPhysical chemistryThe Journal of organic chemistry
researchProduct

Ionic liquids/[bmim][N3] mixtures: promising media for the synthesis of aryl azides by SNAr

2008

The nucleophilic aromatic substitution of some activated aryl or heteroaryl halides has been performed in ionic liquid solution, using the 1-butyl-3-methylimidazolium azide as a nucleophile. The reaction course was studied varying the structures of both substrates and ionic liquids. In particular, in the latter case, the reaction of 2-bromo-5-nitrothiophene was carried out in five different ionic liquids ([bmim][BF 4], [bmim][PF 6], [bmim][NTf 2], [bm 2im][NTf 2], and [bmpyrr][NTf 2]). Finally, for all the substrates considered, a comparison with data obtained in MeOH solution in the presence of NaN 3 was also performed. Data collected indicate that in some cases it is possible to obtain ar…

ArylOrganic ChemistryMedicinal chemistryionic liquids aril azides task specific ionic liquidschemistry.chemical_compoundchemistryNucleophileNucleophilic aromatic substitutionIonic liquidNucleophilic substitutionOrganic chemistryMoleculeAzideSolvent effects
researchProduct

Triazolopyridines. Part 8.1 Nucleophilic substitution reactions of 5-bromo[1,2,3]triazolo[5,1-a]isoquinoline and 7-bromo[1,2,3]-triazolo[1,5-a]pyridi…

1988

Abstract Nucleophilic substitution of 5-bromotriazoloisoquinoline (3) and of 7-bromo-3-methyltriazolopyridine (6) proceeds readily to give a range of 5-substituted triazoloisoquinolines (4a)-(4e), and of 7-substituted triazolopyridines (7a)-(7h) respectively. Triazoloisoquinolines have been converted into 1,3-disubstituted isoquinolines (11)-(13), (15), and (16), and triazolopyridines into 2,6-disubstituted pyridines (17)-(19). Of secondary amine nucleophiles, only piperidine reacted with 7-bromo-3-methyltriazolopyridine (6) to give the 7-substituted derivative (7g). A second product in this reaction was a 2,6-disubstituted pyridine (8); the similar compounds (20)-(24) were the only product…

Bicyclic moleculeOrganic ChemistryBiochemistryMedicinal chemistrychemistry.chemical_compoundchemistryNucleophileMorpholineDrug DiscoveryPyridineNucleophilic substitutionOrganic chemistryAmine gas treatingPiperidineIsoquinolineTetrahedron
researchProduct

Nucleophilic substitutions on bromotriazolopyridines - an improved route to 2,6-disubstituted pyridines and to 1,3-disubstituted isoquinolines

1986

Abstract A regiospecific synthesis of 2,6-disubstituted pyridines and of 1,3-disubstituted isoquinolines is described.

Bicyclic moleculeOrganic ChemistryHydrazineSulfuric acidBiochemistryAcetic acidchemistry.chemical_compoundchemistryNucleophileDrug DiscoveryNucleophilic substitutionOrganic chemistryPiperidineBond cleavageTetrahedron Letters
researchProduct